Phosphine Complexes of Main Group Elements: $AI[C(PMe_2)_2X]_3$ (X = PMe₂ or SiMe₃), the First Examples of Six-co-ordinate Aluminium Phosphine Complexes

Hans H. Karsch and Armin Appelt

Anorganisch-Chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-8046 Garching, Federal Republic of Germany

Neutral, homoleptic phosphinomethyl aluminium compounds $AI[C(PMe_2)_2X]_3$ (X = PMe₂ or SiMe₃) have been synthesized and characterized as octahedral aluminium phosphine complexes by means of n.m.r. spectroscopy (¹H, ¹³C, ³¹P, and ²⁷AI).

Phosphinomethyl substituted compounds (A) are of rapidly growing interest, both in transition and main group element chemistry.1 With aluminium as the co-ordination centre E and the $(CH_2PMe_2)^-$ ligand $[(A), X = Me, Cl, or CH_2PMe_2,$ n = 2, x = 1], neutral, phosphinomethyl bridged dimers are formed by both C and P co-ordination.² Increasing the number of the methyl group substituents in (A), e.g. in going from x = 1 to 2^3 and 3 increases the steric bulk and decreases the nucleophilicity of the (formal) carbanion. Particularly in the latter case (x = 3), co-ordination of the carbon atom to the metal centre should be less likely, thus favouring P co-ordination. This argument led to a new concept for the preparation of main group element phosphine complexes,⁴ which proved to be successful for the preparation of homoleptic tin(II) phosphine complexes, such as $Sn[C(PR_2)_3]_2$.⁵ If this is a general route to main group element phosphine complexes, a similar successful procedure should give rise to homoleptic phosphine complexes of aluminium, which possibly might exhibit an octahedral phosphine environment at the aluminium centre for the first time.

$$X_n E[CH_{(3-x)} (PMe_2)_x] \qquad (x = 1-3)$$
(A)

This, indeed, is the case. From the reaction of a mixture of AlCl₃ with Li[C(PMe₂)₃]⁶ or Li[C(PMe₂)₂SiMe₃]⁷ (3 equiv.) and after removal of the tetrahydrofuran (thf) solvent, compounds (1a) and (1b) were obtained as colourless solids by pentane extraction and subsequent sublimation of the extractants [(1a): sublimation temperature 180 °C at 10^{-3} Torr; (1b): 175 °C at 10^{-3} Torr].[†]

AlCl₃ + 3 Li[C(PMe₂)₂X]
$$\xrightarrow{\text{thf}}_{-3\text{LiCl}}$$
 Al[(PMe₂)₂CX]₃
(1)
a; X = PMe₂
b; X = SiMe₃

The most straightforward confirmation of the proposed octahedral structure of (1a) and (1b) is provided by their ²⁷Al n.m.r. spectra.[‡] Whereas tetrahedral phosphinomethyl aluminium compounds show only very broad ²⁷Al resonances because of their low symmetry at 170-150 p.p.m.,² much sharper resonances of octahedral aluminium complexes with a symmetrical environment are expected at a lower frequency (50-0 p.p.m.).⁸ The signals for (1a) and (1b) both fall in the expected range for octahedral aluminium [(1a): 27.64; (1b): 35.14 p.p.m.]. In both cases, septets are observed at +100 °C (Figure 1), thus clearly indicating the octahedral environment, constituted by the six equivalent phosphorus atoms and with a one-bond ²⁷Ål-³¹P coupling being observed for the first time [(1a): ¹J(AlP) 97.7; (1b): 91.6 Hz]. The ³¹P n.m.r. spectra confirm these findings. At -80 °C, (1b) shows a sharp singlet (-1.26 p.p.m.), whereas (1a) shows two singlets [$\delta(P_A)$ 2.27,

[†] Satisfactory elemental analysis values were obtained for (1a) and (1b).

[‡] The n.m.r. spectra were recorded in the temperature range -90 to +100 °C; +ve δ values (p.p.m.) refer to low field, J values are in Hz: ¹H (60 MHz, C₆D₅CD₃, +30 °C, SiMe₄ ext.): (1a): δ(P_AMe) 1.40 (br. s) and 1.90 (br. s); δ (P_BMe) 1.54 (d, ²J_{PCH} 3.2); (1b): δ(PMe) 1.45 (br. s) and 1.69 (br. s); δ (SiMe) 0.57 (s); ¹³C (50.35 MHz, C₆D₆, +30 °C, SiMe₄ ext.): (1a): δ (P_AMe) 20.51 (unsymmetrical m); δ(P_BMe) 18.26 (dt, ¹J_{PC} 14.0, ³J_{PCPC} 1.7); δ(P₃C) 13.3 [td, ¹J(P_AC) 8.8, ¹J(P_BC) 1.5]; (1b): δ(PMe) 21.41 (br. s); δ(P₂CSi) 16.74 (t, ¹J_{PC} 17.8) at -80 °C; δ(SiMe) 5.04 (s); ³¹P (36.44 MHz, C₆D₅CD₃, 85% H₃PO₄ ext.): see text; ²⁷Al [52.115 MHz, C₆D₅CD₃, Al(NO₃)₃-D₂O ext.]: see text.

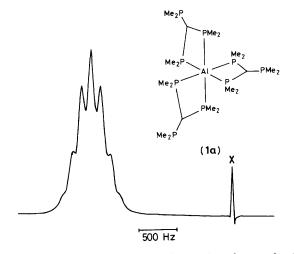


Figure 1. ²⁷Al N.m.r. spectrum of (1a); X is the reference signal.‡

 $\delta(P_B)$ -45.31 p.p.m.] in a 2:1 ratio. On warming, the low-field signals, which are attributed to the co-ordinated phosphorus nuclei, broaden and finally, a complex, unresolved multiplet is observed in the temperature range -20 to +90 °C, due to coupling with ²⁷Al. In addition, the ¹H and ¹³C n.m.r. data clearly indicate the anisochronic nature of the

respective MeP nuclei due to the chelating function of the ligands in an octahedral co-ordination sphere.

From these and our previous⁵ findings it emerges that anionic phosphine ligands are suitable for the preparation of homoleptic phosphine complexes in a general sense and that phosphinomethanides are the ligands of choice for the generation of high phosphine co-ordination numbers.

Received, 3rd May 1985; Com. 592

References

- For leading references, see: H. H. Karsch, *Chem. Ber.*, 1984, 117, 783; H. H. Karsch and A. Appelt, *Z. Naturforsch.*, *Teil B*, 1983, 38, 1399; H. H. Karsch, G. Müller, and C. Krüger, *J. Organomet. Chem.*, 1984, 273, 195.
- 2 H. H. Karsch, A. Appelt, and G. Müller, *Organometallics*, 1985, 4, 231.
- 3 H. H. Karsch and A. Appelt, to be published.
- 4 H. H. Karsch, A. Appelt, and G. Müller, *Organometallics*, in the press.
- 5 H. H. Karsch, A. Appelt, and G. Müller, *Angew. Chem.*, *Int. Ed. Engl.*, 1985, **24**, 402.
- 6 H. H. Karsch, Z. Naturforsch., Teil B, 1979, 34, 1178.
- 7 H. H. Karsch and A. Appelt, to be published.
- 8 R. Benn, A. Rufinska, H. Lehmkuhl, E. Janssen, and C. Krüger, Angew. Chem., Int. Ed. Engl., 1983, 22, 779; J.-J. Delpuech, M. R. Khaddar, A. A. Peguy, and P. R. Rubini, J. Am. Chem. Soc., 1975, 97, 3373.